The role of Foxg1 and dorsal midline signaling in the generation of Cajal-Retzius subtypes.
نویسندگان
چکیده
Cajal-Retzius (CR) cells, the earliest-born neurons in the neocortex, arise from discrete sources within the telencephalon, including the dorsal midline and the pallial-subpallial boundary (PSB). In particular, the cortical hem, a region of high bone morphogenetic proteins (BMPs) and Wnt (wingless-type MMTV integration site family) expression but lacking in Foxg1 (forkhead box G1) is a major source of CR neurons. Whether CR cells from distinct origins arise from disparate developmental processes or share a common mechanism is unclear. To elucidate the molecular basis of CR cell development, we assessed the role of both Foxg1 and dorsal midline signaling in the production of cortical hem- and PSB-derived CR cells. We demonstrate that the loss of Foxg1 results in the overproduction of both of these CR populations. However, removal of Foxg1 at embryonic day 13, although expanding the number of CR cells with a PSB phenotype, does not result in an expansion of BMPs or Wnts in the dorsomedial signaling center. Conversely, loss of the dorsal midline ligands as observed in Gli3 (glioma-associated oncogene homolog 3) mutants results in the loss of the cortical hem-derived CR character but does not affect the specification of PSB-derived CR cells. Hence, our findings demonstrate that, although the specification of cortical hem-derived CR cells is dependent on signaling from the dorsal midline, Foxg1 functions to repress the generation of both cortical hem- and PSB-derived CR cells.
منابع مشابه
Foxg1 suppresses early cortical cell fate.
During mammalian cerebral corticogenesis, progenitor cells become progressively restricted in the types of neurons they can produce. The molecular mechanism that determines earlier versus later born neuron fate is unknown. We demonstrate here that the generation of the earliest born neurons, the Cajal-Retzius cells, is suppressed by the telencephalic transcription factor Foxg1. In Foxg1 null mu...
متن کاملHes genes and neurogenin regulate non-neural versus neural fate specification in the dorsal telencephalic midline.
The choroid plexus in the brain is unique because it is a non-neural secretory tissue. It secretes the cerebrospinal fluid and functions as a blood-brain barrier, but the precise mechanism of specification of this non-neural tissue has not yet been determined. Using mouse embryos and lineage-tracing analysis, we found that the prospective choroid plexus region initially gives rise to Cajal-Retz...
متن کاملMicroRNA-9 modulates Cajal-Retzius cell differentiation by suppressing Foxg1 expression in mouse medial pallium.
Vertebrate brain hosts a diverse collection of microRNAs, but little is known about their functions in vivo. Here we propose that mouse microRNA-9 (miR-9) targets Foxg1 mRNAs for proper generation of Cajal-Retzius cells in the medial pallium. miR-9 expression is mediolaterally graded, being most intense in the cortical hem; it contrasts with the Foxg1 expression in a reciprocal gradient. The 3'...
متن کاملFoxg1 confines Cajal-Retzius neuronogenesis and hippocampal morphogenesis to the dorsomedial pallium.
It has been suggested that cerebral cortex arealization relies on positional values imparted to early cortical neuroblasts by transcription factor genes expressed within the pallial field in graded ways. Foxg1, encoding for one of these factors, previously was reported to be necessary for basal ganglia morphogenesis, proper tuning of cortical neuronal differentiation rates, and the switching of...
متن کاملA Novel Role for Dbx1-Derived Cajal-Retzius Cells in Early Regionalization of the Cerebral Cortical Neuroepithelium
Patterning of the cortical neuroepithelium occurs at early stages of embryonic development in response to secreted molecules from signaling centers. These signals have been shown to establish the graded expression of transcription factors in progenitors within the ventricular zone and to control the size and positioning of cortical areas. Cajal-Retzius (CR) cells are among the earliest generate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 27 41 شماره
صفحات -
تاریخ انتشار 2007